Carbon Sequestration in Colorado and the Craig Project

Vince Matthews

State Geologist and Director

Regional Carbon Sequestration Partnerships Seven Partnerships Established in Five Geographic Regions

Three-Phased Approach

Phase I (Planning) 2003-05

-7 Projects-\$1.5 million per project-Overall ~ 40% cost share

Phase II (Proof-of-Concepts 2005-09

- ~ \$3 to \$5 million per year/project
- minimum 20% cost share
- ~ 5 Regions

Phase III (Deployment) 2009-19

- ~ \$65 million per project
- > 20% cost share
- ~ 5 Projects

Characterize the Major Colorado Sources

Delineate Pilot Study Areas around major sources

Identify and characterize the various geologic sinks in potential pilot areas

CO2 Emissions in Colorado

98.1 Mt total for 2007 Source: EPA

Power Plants Ranked by Emissions

Preliminary Estimates of CO2 Sequestration Potential

2000 Emissions (Mt)		Geologic			Mineralization	
		Oil & Gas	Coal Beds	Saline Aquifers	Silicates	Produced Waters
Canon City	9.4	0	493	122,118	2,200	
Craig	14.4	123	11,059	46,209	30,000	0.001
Denver	14.1	557	602	129,138		<0.001
Fort Morgan	4.1	164	0	43,700		<0.001
Ignacio	31.5	186	2,809	92,142		0.009
Palisade	0.8	116	1,798	132,330	200	<0.001
Rangely	3.4	740	1,037	102,579		0.015
Total	78.5	1,886	17,798	668,286	32,400	0.026

Phase II 2005-09

Detailed Geology

Modeling of the reservoir performance

Do the project and measure results

Phase II Pilots

Pilot Location

MMV Operations

- Direct methods
 - Injection rate monitoring
 - Production well LI-COR
 - Abandoned well LI-COR
 - Gas piezometers LI-COR
 - In situ P/T well monitoring (fiber optic sensors)
 - Tiltmeter arrays with InSAR
 - Spinner surveys
 - H2O chemistry & isotopes
 - Fluid/gas chemistry & isotope analysis

- Indirect methods
 - 2-D seismic surveys
 - Crosswell seismic
 - Passive seismic
 - Borehole integrity by resistivity monitoring
 - VSP
 - ASTLI
 - Integrated seismic model
 - State-of-the-art reservoir models

 Inject for 12 mos.; monitor intensely for 24 mos.; commence January 2008

Development of a best practices manual

The Award

\$4.8 million Project

\$3.8 million from Department of Energy

\$1.0 million from Partners (20%)

The Partners

Tri-State Generation and Transmission- \$300K

Shell Exploration & Production- \$200K

Colorado Geological Survey- \$162K

Schlumberger Carbon Management- \$150K

University of Utah – Energy & Geoscience Institute - \$125K

Utah Geological Survey- **\$22K** Arizona Geological Survey- **\$19K**

New Mexico Geological Survey- \$19K

The Plan – Year 1

Characterize the Structure

Build database Purchase seismic Process & interpret seismic Map surface structure Shoot seismic line Pick location for drill hole Permit well

The Plan – Year 2

Drill Well

Core Shale Core Sandstones Sample Waters Analyze Samples CO2 Injectivity Experiments on cores

Begin Engineering Analysis & Reservoir Modeling

The Plan – Year 3

Model Reservoir

Storage Volume
CO2 Migration
Potential Leakage Pathways
Develop Optimal Injection Program
Final Report

Extend results to Colorado Plateau

UU-EGI Regional storage Model

AZ, NM, UT, CO Geosurveys

Risk Assesment

Programmatic risk

resource and management risks that may impede project progress or costs

Sequestration (technical) Risks

risks inherent to the scientific and engineering objective of sequestering CO2.

Safety

